完成。
这项任务并不需要许宁亲自上阵,但他自己的担子也未减轻。发现问题只是开始,更重要的是找到解决办法。
尽管涡喷发动机的压气机与他之前研究的空调风扇都属于叶轮机械范畴,但两者的复杂程度却如同莱特兄弟的飞行者一号与安东诺夫的安-225运输机之间的差距一样巨大。
晚饭后,许宁在阎良的工厂区漫步,思索着未来的规划。
凭借胸前挂着的八三工程工作证,他可以自由穿行于大部分区域,只有少数建筑需要特别许可,不过散步自然不需要去那些地方。
他心中盘旋着一个疑问:1996年的涡扇10究竟进展如何?
除了核心部件如燃烧室、涡轮、风扇、轴承和尾喷口外,他最关心的是涡喷14。这款发动机虽有现成研发,但如果要改进,仍需尊重原研发思路。
涡喷14虽不像涡扇6那样频繁变动研发目标和地点,但也经历了数次方案重做,未能成为支撑国家天空的力量。
“呼——”他长舒一口气,他暗自决定:组建团队是关键,而且必须由我主导。
为了深入了解叶片内部流动,尤其是分离流动的规律,他意识到不仅要向外传播自己的新发现,还要不断吸收新的知识。
他突然想到,通过制造大迎角下的脱体流,可以利用分离流动形成的集中涡旋增加升力,显着提升飞机性能。
然而,当前的技术仅能实现二维定常计算,离准三维还有差距。
此时,距涡扇10项目启动已近十年,但其进展并不乐观。1987年立项的涡扇10与涡喷14几乎是并行发展,考虑到这些,许宁的脚步停了下来,准备返回。
他的思绪再次回到了更为熟悉的飞行器研发领域。一个想法不期而至:除了推广自己的研究成果,他还需要一个学习和吸收新知的过程。
经过一段时间研究弯曲叶片后,许宁认为只要410厂能够提高生产效率,八三工程的进度就不会受到太大影响。
尽管重生之初他就明白单打独斗是行不通的,但还是没想到挑战来得如此迅速。
压气机内气流的复杂流动一旦出现分离,情况就会超出常规理论的解释范围,解决起来